曼哈顿距离最小生成树 codechef Dragonstone

曼哈顿距离最小生成树

codechef Dragonstone

首先,对于每一个点来说有用的边只有它向它通过 x=0,y=0,y=x,y=-x 切出来的八个平面的最近点。

证明 我不会

反正当结论记住就行了

然后我们就只需要考虑右上这个区间的点(因为看起来最好做)

其他的区间可以通过坐标变换到这个区间,并且因为边是双向的,可以只考虑y=-x切出来的右上的这四个区间。

对于一个点$B(x_1,y_1)$和这里的点$A(x_0,y_0)$B是合法的当且仅当$x_1 > x_0 , y_1 > y_0 , x_1-x_0 \leq y_1 - y_0$

再推一下,发现$y_1 > y_0$这个条件然并卵,因为第三个条件和第一个条件已经限制了它

所以我们可以看成这两个式子$x_1 > x_0 , x_1 - y_1 \leq x_0 - y_0$

同时,需要满足$x_1 + y_1$尽量小

把$x_1 + y_1$当成权值加入线段树,位置在$x_1 - y_1$就好了

差需要离散化

别忘多组。。wa了好多次。。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
#define int long long
#define MAXN 800006
#define pb push_back
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define inf 0x3f3f3f3f3f3f3f3f
int n , q;
namespace SGT {
pii T[MAXN << 2];
void pushup( int rt ) {
T[rt] = min( T[rt << 1] , T[rt << 1 | 1] );
}
void build( int rt , int l , int r ) {
T[rt] = mp( inf , inf );
if( l == r ) return;
int m = l + r >> 1;
build( rt << 1 , l , m ) , build( rt << 1 | 1 , m + 1 , r );
}
void mdfy( int rt , int l , int r , int p , pii c ) {
if( l == r && p == l ) { T[rt] = min( T[rt] , c ); return; }
int m = l + r >> 1;
if( p <= m ) mdfy( rt << 1 , l , m , p , c );
else mdfy( rt << 1 | 1 , m + 1 , r , p , c );
pushup( rt );
}
pii que( int rt , int l , int r , int L , int R ) {
if( L <= l && R >= r ) return T[rt];
int m = l + r >> 1; pii res = mp( inf , inf );
if( L <= m ) res = min( res , que( rt << 1 , l , m , L , R ) );
if( R > m ) res = min( res , que( rt << 1 | 1 , m + 1 , r , L , R ) );
return res;
}
}
#define mx 600000
struct point{
int x , y , id;
} P[MAXN] ;
bool cmp( point x , point y ) {
return x.x == y.x ? x.y > y.y : x.x > y.x;
}
int A[MAXN] , a[MAXN];
struct edge{
int u , v , w;
} E[MAXN] ; int ecn;
void doit( ) {
sort( P + 1 , P + 1 + n , cmp );
for( int i = 1 ; i <= n ; ++ i ) A[i] = P[i].x - P[i].y;
sort( A + 1 , A + 1 + n );
int sz = unique( A + 1 , A + 1 + n ) - A - 1;
for( int i = 1 ; i <= n ; ++ i ) a[i] = lower_bound( A + 1 , A + 1 + sz , P[i].x - P[i].y ) - A ;
SGT::build( 1 , 1 , mx );
pii res = mp( 0 , 0 );
for( int i = 1 ; i <= n ; ++ i ) {
pii fd = SGT::que( 1 , 1 , mx , 1 , a[i] );
if( fd.se != 0x3f3f3f3f3f3f3f3f )
E[++ecn] = ( edge ) { P[i].id , fd.se , - P[i].x - P[i].y + fd.fi };
SGT::mdfy( 1 , 1 , mx , a[i] , mp( P[i].x + P[i].y , P[i].id ) );
}
}
bool cmpp( edge a , edge b ) {
return a.w < b.w;
}
int fa[MAXN];
int find( int x ) {
return x == fa[x] ? x : fa[x] = find( fa[x] );
}

namespace tree {
int head[MAXN] , nex[MAXN] , to[MAXN] , wto[MAXN] , cn;
void ade( int u , int v , int w ) {
nex[++cn] = head[u] , to[cn] = v , wto[cn] = w , head[u] = cn;
}
#define MAXK 20
int G[MAXN][MAXK][2];
int dep[MAXN];
void init( ) {
dep[1] = 0;
memset( head , 0 , sizeof head );
memset( G , 0 , sizeof G );
cn = 0;
}
void dfs( int u , int fa ) {
dep[u] = dep[fa] + 1;
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == fa ) continue;
G[v][0][0] = u , G[v][0][1] = wto[i];
for(int j = 1 ; j < 20 ; ++ j)
if(G[G[v][j - 1][0]][j - 1][0])
G[v][j][0] = G[G[v][j-1][0]][j-1][0],G[v][j][1] = max(G[v][j-1][1],G[G[v][j-1][0]][j-1][1]);
else break;
dfs( v , u );
}
}
int que( int u , int v ) {
if( dep[u] < dep[v] ) swap( u , v );
int suml = -inf , sumr = -inf;
if( dep[u] != dep[v] )
for( int k = MAXK - 1 ; k >= 0 ; -- k )
if( dep[G[u][k][0]] >= dep[v] )
suml = max( suml , G[u][k][1] ) , u = G[u][k][0];
if( u == v ) return max( suml , sumr );
for( int k = MAXK - 1 ; k >= 0 ; -- k )
if( G[u][k][0] != G[v][k][0] )
suml = max( suml , G[u][k][1] ) , sumr = max( sumr , G[v][k][1] ),
u = G[u][k][0] , v = G[v][k][0];
suml = max( suml , G[u][0][1] ) , sumr = max( sumr , G[v][0][1] );
return max( suml , sumr );
}
}

signed main( ) {
freopen("fuck.in","r",stdin);
int T;cin >> T;
while( T-- ) {
cin >> n;
ecn = 0;
for( int i = 1 , u , v ; i <= n ; ++ i )
scanf("%lld%lld",&P[i].x,&P[i].y) , P[i].id = i;
doit( );
for( int i = 1 ; i <= n ; ++ i ) swap( P[i].x , P[i].y );
doit( );
for( int i = 1 ; i <= n ; ++ i ) P[i].x = -P[i].x;
doit( );
for( int i = 1 ; i <= n ; ++ i ) swap( P[i].x , P[i].y );
doit( );
sort( E + 1 , E + 1 + ecn , cmpp );
tree::init( );
for( int i = 1 ; i <= n ; ++ i ) fa[i] = i;
for( int i = 1 ; i <= ecn ; ++ i ) if( find( E[i].u ) != find( E[i].v ) )
fa[find( E[i].u )] = find( E[i].v ) ,
tree::ade( E[i].u , E[i].v , E[i].w ) ,
tree::ade( E[i].v , E[i].u , E[i].w );
tree::dfs( 1 , 1 );
cin >> q;
int u , v;
while( q-- ) {
scanf("%lld%lld",&u,&v);
printf("%lld\n",tree::que( u , v ));
}
}
}
文章作者: yijan
文章链接: https://yijan.co/2019/10/10/old27/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Yijan's Blog